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Problem Statement

Context

Mineral resources are used in various fields, from
daily necessities to cutting-edge technology, and
have become anindispensable element for the
development of modern society.

In Africa and Southeast Asia, these mineral
resources are abundant and contribute to
economic growth and trade expansion as major
exportsin many African and Southeast Asian
countries.

On the other hand, these countries face issues,
such as the inability to properly monitor mine
development, often resulting from a lack of their
resources.
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We aimtodevelop a « Environmental Conservation by
technology for detecting preventing unauthorized mining

« Economic Benefits to help in sustaining
the local economies that depend on
mining, such as in Senegal

mining sites using images
from the optical satellite

Sentinel-2. Specifically, it - Alleviate social issues like conflicts over
involves classifyingimages land use, labor exploitation.

that contain mining sites « Mitigate health risks associated with
and those that do not. poor mining practices, such as exposure

to mercury and increased substance abuse.



PREPROCESSING

LAND COVER CLASSIFICATION MINE VOID MAPPING
USING OBIA

Shape/Geometry Classification
(Elongation, Circularity) and
Additional Filtering
Void
Location Classification using

(WIUP)
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Automated detection of illegal
nonmetallic minerals mining places
according to Sentinel-2 data
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Reflectance values in 10 spectral channels of the Sentinel 2.

1. Spatial Resolution Adjustment to the best resolution of 10 meters using GDAL library utilities, resulting in asingle
GeoTiff file per image.

2. 12 Spectral Indices Calculation for each image, leading to the creation of two composites consisting of 22 layers

each (10 spectral channels + 12 spectral indices).

3. Utilized 2019 field observation data to create vector layers marking reference quarry locations.

4. Training samples for four types of materials (sand, sand-gravel mix, clays, carbonate rocks) were formed by

collecting pixel values corresponding to these locations across 22 channels from two Sentinel2 composites.

5. Mahalanobis Distance Classification to get the probability of each pixel belonging to a particular quarry type.

6. Maximum Entropy Method to produce probability distribution models for each quarry type. MaxEnt is used for its

ability to generate models and predictions based on presence-only data.

ComPOSites Of mu Itip Ie indexes mUSt be used a Usmanov, B. M., Isakova, L. S., Mukharamova, S. S., Akhmetzyanova, L. G., & Kuritsin, I. N. (2021). Automated detection

of illegal nonmetallic minerals mining places according to Sentinel2 data. In Proceedings of SPIE 11863, Earth
Resources and Environmental Remote Sensing/GIS Applications XII, 118631C. SPIE. https://doi.org/10.1117/12.2600315
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_ Dataset

The Sentinel 2 multispectral data, publicly released by the
European Space Agency (ESA), are used for this study.

They are acquired through two twin satellites (Sentinel 2A and
Sentinel 2B), launched separately in synchronous polar orbit
atanaltitude of 786 kmand evolving 180° apart. Each satellite
is equipped with a Multi-Spectral Imager (MSI) sensor
including 13 spectral bands (from 443 to 2,190 nm) with a field
of view of 290 kmand a spatial resolutions of 10 m (four bands
in the visible and near infrared domains), 20 m (six bands in
the near and short wavelengthinfrared domain, NIR and
SWIR), and 60 m (three atmospheric correction bands)

Central wavelength Resolution
Sentinel-2 bands (um) (m)
Band 1 - Coastal aerosol 0.443 60
Band 2 - Blue 0.490 10
Band 3 - Green 0.560 10
Band 4 - Red 0.665 10
Band 5 - Vegetation red edge 0.705 20
Band 6 — Vegetation red edge 0.740 20
Band 7 - Vegetation red edge 0.783 20
Band 8 - NIR 0.842 10
Band 8A - Vegetation red 0.865 20
edge
Band 9 — Water vapour 0.945 60
Band 10 — SWIR - Cirrius 1375 60
Band 11 — SWIR 1.610 20
Band 12 - SWIR 2.190 20



1. Classification
model




ur Data

» The Sentinel-2images containinformation on 12 bands:
‘BT, ‘B2, 'B3’, 'B4’, 'B5', '‘B6’, 'B7", 'B8', '‘B8A', ‘B9, 'B11", 'B12’
« Eachbandis of size 512x512 pixels.
« Theimages have been processedto mask clouds from 2022/1/1t02023/12/31, and the
median of all images is used as the image for that location.

Band 2




train_0.tif
train_1.tif
train_2.tif
train_3.tif
train_4.tif
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train_6.tif
train_7.tif
train_8.tif
train_0.tif
train_10.tif
train_11.tif
train_12.tif
train_13.tif
train_14.tif
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__ Data Pre-processing

- Normalization/Clipping
- Adding spectral Indices
- Adding spectral Indices
- Feature extraction

- Data Augmentation

Usmanov, B. M., Isakova, L. S., Mukharamova, S. S., Akhmetzyanova, L. G., & Kuritsin, I. N. (2021). Automated detection
of illegal nonmetallic minerals mining places according to Sentinel-2 data. In Proceedings of SPIE 11863, Earth
Resources and Environmental Remote Sensing/GIS Applications XII, 118631C. SPIE. https://doi.org/10.1117/12.2600315

LightGBM RFECV: Number of features vs. Cross-Validation Score

Feature Importances of all Bands.
Clipped 1/99 perc. Band 4
Yo - |

100 -8

Optimal number of features : 19
Model Accuracy with Selected Features: 0.75

['Band_1', 'Band_2', 'Band_3', 'Band_4', 'Band_5', 'Band_é', 'Band_7', 'Band_8', 'Band_9', 'Band_10', 'Band_11', 'Band_12',
‘Band_13', 'Band_15', 'Band_16', 'Band_19', 'Band_22', 'Band_23', 'Band_24']




_ ML-Methodology 4

Convolutional Neural Network (CNN)
With Transfer Learning

* TheMaxViT model, specifically the "maxvit_tiny_tf_512"
configuration,isbeingemployed thatis relevant to ' ~ TRANGSFER LEARNING

classification tasks. = ,
CARvV
. m = TRUCK X

* MaxViTisatype of Vision Transformer that integratesboth

convolutionaland transformer architectures.
*  Maxvit_tiny_tf_512modelis initialized with 14 input channels

andis set topredict two classes.

Why?
* MaxViT canbenefit from transfer learning, where a model pretrained ona

large dataset (such as ImageNet) is fine-tuned on a smaller, domain-
specific dataset.

* MaxViT combines the strengths of both convolutional neural networks B e e o cmuecing
(CNNs) and transformers. i s ey o Bt i Lo

https://doi.org/10.1016/j.rse.2020.111970



___ Performance Metrics

Fold 0
Loss F1 score Learning rate
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2.51it/s]

Epoch 12 training 63/63 [LR 0.00000

- loss: 0.3292: 100% || 63/63 [00:26<00:00,

Step

2.38it/s]

Epoch 12 training 63/63 [LR 0.000001] - loss: 0.3319: 100%| | 63/63 [00:25<00:00,

tp: 203, tn: 786, fp: 2, fn: 2

Epoch 12 train loss = 0.3319, base f1 score (0.5 threshold) = 0.9828 (best threhold: 0.39 -> f1 0.9902)

100% | NN | 42/42 [00:04<00:00, 9.22it/s]

tp: 42, tn: 191, fp: 7, fn: 9
Epoch 12 validation loss = 0.5055, base f1 score (0.5 threshold) = 0.8400 (best threhold: 0.49 —> f1 0.8400)
Accuracy: 0.9357
Confusion Matrix:
tensor([[191, 91,
[ 7, 4211, dtype=torch.int32)

tp: 195, tn: 789, fp: @, fn: 9
Epoch 12 train loss = 0.3292, base f1 score (0.5 threshold) = 0.9754 (best threhold: 0.66 —> f1 0.9774)

100% | NN | 42/42 [00:04<00:00, 9.46it/s]

tp: 51, tn: 189, fp: 8, fn: 1
Epoch 12 validation loss = 0.3984, base f1 score (0.5 threshold) = 0.9174 (best threhold: 0.43 —> f1 0.9189)
Accuracy: 0.9639
Confusion Matrix:
tensor([[189, 1],
8, 51]], dtype=torch.int32)
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__ Our Data -




Model Architecture:
- Combine encoder
y and decoder
Encoder Selection Decoder Selection - Input channels: 3

- ResNet34 - F'PN‘(FeatUre Pyramla - Output sses1 \ LOSSA e
- Get preprocessing parameters / Network) (( - Dice Loss

(mean=[0.485, 0.456, 0.406], std= , -LBirl_aI'y mlode
[0.229, 0.224, 0.225]) - Logits as input

Training Step Forward Pass
‘ , ; o ey Ibssv (Dxce Yoss) - Normalize input image
Optimization Validation Step e P e dictons (e - Pass through encoder-
- Adam optimizer - Same as trainingstep  __— Gix 0.5) 9 — | decoder
|- Lea 3 = Compu;er::;;::s without --GbmlSﬁt'a'»fP,‘FP; FN, n - Obta::; :Ic:?on;;r;tauon
- Return loss and metrics

Madhuanand, L., Sadavarte, P., Visschedijk, A.J.H., Denier Van
Der Gon, H.A.C., Aben, I., & Osei, F.B. (2021). Deep convolutional
neural networks for surface coal mines determination from sentinel-
2 images. *European Journal of Remote Sensing, 54(1), 296-309.
https://doi.org/10.1080/22797254.2021.1920341



___ Performance Metrics -

Normalized Image Ground Truth Mask

[{'valid_dataset_iou': 0.5550410747528076,
'valid_per_image_iou': 0.5450248718261719}]

nd Truth Mask

[{'test_dataset_iou': 0.5458776950836182,
'test_per_image_iou': 0.5388392210006714}]
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